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A Pattern-Matching Scheme With High Throughput
Performance and Low Memory Requirement
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Abstract—Pattern-matching techniques have recently been ap-
plied to network security applications such as intrusion detection,
virus protection, and spam filters. The widely used Aho–Corasick
(AC) algorithm can simultaneously match multiple patterns while
providing a worst-case performance guarantee. However, as trans-
mission technologies improve, the AC algorithm cannot keep up
with transmission speeds in high-speed networks.Moreover, it may
require a huge amount of space to store a two-dimensional state
transition table when the total length of patterns is large. In this
paper, we present a pattern-matching architecture consisting of a
stateful pre-filter and anAC-based verification engine. The stateful
pre-filter is optimal in the sense that it is equivalent to utilizing all
previous query results. In addition, the filter can be easily realized
with bitmaps and simple bitwise-AND and shift operations. The
size of the two-dimensional state transition table in our proposed
architecture is proportional to the number of patterns, as opposed
to the total length of patterns in previous designs. Our proposed ar-
chitecture achieves a significant improvement in both throughput
performance and memory usage.

Index Terms—Aho–Corasick (AC) algorithm, Bloom filter, deep
packet inspection, pattern matching.

I. INTRODUCTION

P ATTERN matching has been an important technique in
information retrieval and text editing for many years and

has recently been applied to signature matching to help detect
malicious attacks against networks. In a wider sense, pattern
matching searches for occurrences of plain strings and/or reg-
ular expressions in an input text string. This paper only con-
siders the matching of plain strings.
Well-known pattern-matching algorithms include

Knuth–Morris–Pratt (KMP) [1], Boyer–Moore (BM) [2],
Wu–Manber (WM) [13], and Aho–Corasick (AC) [3]. The
KMP and BM algorithms are efficient for single-pattern
matching, but are not suitable for matching multiple patterns.
The WM algorithm is an adaptation of the BM algorithm to
multiple patterns. The AC algorithm preprocesses the patterns
and builds a finite automaton that can match multiple patterns
simultaneously, but may require a huge amount of memory
space to do so. A straightforward implementation of the AC
algorithm is to construct a two-dimensional state transition
table for the finite automaton. Such an implementation requires
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a prohibitively huge amount of memory space when the total
pattern length is large. Several schemes had been proposed
to reduce the memory requirement. Some are incorporated
in Snort [7], [8], an open-source intrusion detection/pre-
vention application, and ClamAV [9], another open-source
anti-virus/worm application. These compression schemes are
related to our work and will be reviewed in Section II.
The AC algorithm guarantees linear-time deterministic per-

formance under all circumstances and has thus been widely
adopted in various systems. However, even with the linear-time
worst-case performance guarantee, the throughput of the AC al-
gorithm cannot keep up with transmission speeds in high-speed
networks. Previous studies have exploited hardware capacity for
massive parallel processing to proposed hardware accelerators
for pattern-matching engines [4]–[6], [32], [33], but this lies out-
side the scope of this paper.
This paper presents a pattern-matching architecture with

high throughput performance and low memory requirements.
Similar to the WM algorithm and the Hash-AV ClamAV
scheme [30], our proposed architecture consists of a pre-filter
and a verification engine. The function of the pre-filter is to
query data structures built from patterns to find the starting
positions of potential pattern occurrences. Once a suspicious
starting position is found, the verification engine confirms true
pattern occurrence. In the WM algorithm, the pre-filter was
implemented as a shift table, and the verification engine checks
all candidate patterns sequentially when a potential starting
position is identified. In the Hash-AV ClamAV scheme, the
pre-filter is a Bloom filter [14], [15], and the verification engine
is a simplified version of the ClamAV implementation without
the failure function. The proposed design, however, uses a bit
vector, called master bitmap, with simple bitwise-AND and
shift operations to accumulate query results. Consequently, our
proposed pre-filter is stateful, as opposed to the statelessness
in the WM algorithm and the Hash-AV ClamAV scheme.
We prove in this paper that the proposed stateful pre-filter
is optimal in the sense that it is equivalent to utilizing all
previous query results. Our verification engine, which is a mod-
ification of the AC automaton, checks all candidate patterns
simultaneously rather than sequentially. Numerical results
show that our design outperforms both the WM algorithm
and the Hash-AV ClamAV scheme. Several other pre-filter
designs have been previously proposed [16]–[28]. Similar to
the hardware accelerators of pattern-matching engines, these
designs used parallel processing to achieve high throughput
performance and thus lie outside the scope of this paper.
It should be noted that our proposed stateful pre-filter is

suitable for patterns of moderate or large lengths. For short pat-
terns, its throughput performance degrades. This is a common
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Fig. 1. AC pattern-matching machine for [3].
(a) Goto function. (b) Failure function. (c) Output function.

disadvantage of schemes using pre-filters. The impact of short
patterns on our proposed architecture is studied in Section V.
Nevertheless, the stateful concept improves throughput with
little cost of master bitmap and simple bitwise-AND and shift
operations.
The rest of this paper is organized as follows. Section II re-

views some related work, including the original AC algorithm.
Our proposed pattern-matching architecture is presented in
Section III. In Section IV, we prove that our proposed architec-
ture functions correctly and is an optimal design. Experimental
results are provided in Section V, and conclusions are drawn in
Section VI.

II. RELATED WORK

In this section, we review the AC algorithm, previous com-
pression designs for the AC algorithm, and the WM algorithm.
Throughout this paper, we shall use to
represent pattern set and to denote the input text
string to be scanned.

A. Aho–Corasick Algorithm

The AC pattern-matching machine is dictated by three func-
tions: a goto function , a failure function , and an output func-
tion . Fig. 1 shows the AC pattern-matching machine for

[3].
One state, numbered 0, is designated as the start state. The

goto function maps a pair (state, input symbol) into a state or
the message . For example, in Fig. 1, we have
and if or . State 0 is a special state that
never results in the message, i.e., for all

, the alphabet. The failure function maps a state into
a state and is consulted when the outcome of the goto function
is the message. String is said to represent state if the
shortest path on the goto graph from state 0 to state spells
out . Let and be the strings that represent states and
, respectively. We have if and only if (iff) is

the longest proper suffix of that is also a prefix of some pat-
tern. It is not difficult to verify that for our example.
The output function maps a state into a set of patterns (which
could be empty). The set contains pattern iff is

a suffix of the string representing state . As an example, we
have .
Note that there might be a self-loop on the start state of the

goto graph. In the following definitions, we ignore the self-loop
so that the goto graph can be considered as a tree. State is
said to be a child state of state , and state the parent state
of state , if there exists a symbol such that .
State is said to be a branch state, a single-child state, or a leaf
state if it has at least two child states, exactly one child state,
or no child state, respectively. Moreover, state is said to be a
final state if is not empty.
The operation of the AC pattern-matching machine is as

follows. Let be the current state and be the current input
symbol. An operation cycle is defined as follows.
1) If , the machine makes a state transition such
that state becomes the current state and the next symbol
of becomes the current input symbol. If
(empty set), the machine emits the set . The

operation cycle is complete.
2) If , the machine makes a failure transition
by consulting the failure function . Assume that
. The pattern-matching machine repeats the cycle with

as the current state and as the current input symbol.
Initially, the start state is assigned as the current state, and

the first symbol of is the current input symbol. The property
for all guarantees that one input symbol is

processed by the pattern-matching machine in every operation
cycle.
A straightforward implementation of the goto function uses a

two-dimensional table to look up the next state. However, such
an implementation requires a huge amount of memory space
when the total length of patterns is large. Some compression
schemes are reviewed in the following sections.

B. Bitmap Data Structure

In the bitmap data structure [10], each state has a -bit
bitmap and a state array, where is the size of . The th bit
of the bitmap is a 1 iff . The state array stores
each non-fail , sorted by the value of . As a result, to
find , one needs to count the total number of 1’s in the
bitmap of state up to the th position if . To
reduce the processing time, one can maintain running sums of
every 32 bits in the bitmap, and we assume in this paper that run-
ning sums are maintained for higher throughput performance.
For convenience, this compression scheme is referred to as the
bitmapped AC.
For certain applications such as anti-virus programs, it

is highly likely that the state away from the start state is a
single-child state. Therefore, path compression was introduced
in [10] to squeeze four single-child states into one state.
Memory requirements can be further reduced if the length of
the compressed paths is not restricted. In the scheme proposed
in [12], a state is eliminated if: 1) it is a single-child state;
and 2) there is no incoming failure transition to it. Another
effective compression technique proposed in [12], called leaf
compression, eliminates leaf states with two modifications:
1) pushing the indication of the match to the penultimate
state, and 2) copying the failure transitions of leaf states to the
corresponding penultimate states as their new goto transitions.
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The first modification is realized by adding one bit for each
outgoing goto transition in a state, indicating whether or not
it leads to a final state. The second modification reduces the
number of transitions taken during the automaton traverse. If
both path compression and leaf compression are adopted, then
leaf compression adds a match indication bit to each symbol of
the corresponding compressed path.

C. Banded-Row Format

In the banded-row format [11], which is used in Snort,
the row elements are stored from the first nonzero value (or
non-fail value in the goto transition table) to the last nonzero
value, known as band values. For example, the banded-row
format of the sparse vector (0 0 0 2 4 0 0 0 6 0 7 0 0 0 0 0)
is (8 3 2 4 0 0 0 6 0 7), where the first element indicates the
number of vector elements stored, referred to as bandwidth,
and the second element represents the index (numbered from 0)
of the first vector element stored, followed by the band values.
The AC pattern-matching machine whose goto transition table
is compressed with the banded-row format is referred to as the
banded-row format AC.

D. AC-Bnfa

AC-bnfa is another alternative adopted by Snort for pattern
matching. For each state, it stores a transition list that contains at
least two words. The first word (in the current implementation,
only the least significant 24 bits) stores the state number. The
second word, called the control word, stores a control byte and
the failure state, which takes 24 bits. The control byte contains
one bit to indicate whether or not some patterns are matched
in the state and another bit to show if the number of its child
states, denoted by , is greater than or equal to 64. If ,
then the succeeding words are used to store the input symbols
(1 B) and the corresponding next states (3 B). In case ,
a full array of 256 words is used to store all the possible input
symbols and the corresponding next states. The (input symbol,
corresponding next state) pairs are searched sequentially if
or, with binary search, if . A simple table lookup
is sufficient if .

E. ClamAV Implementation

ClamAV [9] implementation limits the depth of the goto
graph to two and partitions the patterns into groups so that two
patterns are in the same group iff they have the same prefix of
length two. All patterns in the same group are saved as a linked
list associated with a leaf state. Whenever a leaf state is visited,
all patterns on its linked list are checked sequentially.
The Hash-AV ClamAV scheme [30] adds a pre-filter to the

ClamAV implementation. The pre-filter, called Hash-AV, is a
Bloom filter built with hash functions. The input of the hash
functions is a string of bytes. The authors analyzed the length
distribution of ClamAV signatures and suggested choosing
and . The four hash functions selected are “mask” [30],
“xor shift” [30], fast hash from hashlib.c [31], and sdbm [29].
A sliding window of bytes is used to move down the input
text string during scanning. The hash functions are applied se-
quentially to the bytes contained in the window. The ClamAV
implementation is invoked for verification iff all query results
are positive. Obviously, inserting all -byte substrings starting

at the first offsets of all signatures into the Bloom filter allows
the sliding window to be moved bytes at a time. However, the
false positive probability will be increased. Hash-AV ClamAV
uses this strategy and chooses .

F. Wu–Manber Algorithm

The WM algorithm [13] consists of a pre-filter and a verifi-
cation engine. To construct the pre-filter, only the first sym-
bols of each pattern are considered, where is the length of
the shortest pattern. Let , represent the
-symbol prefix of pattern . A SHIFT table, a HASH table, a

PAT_POINT list, and a PREFIX table are required. The SHIFT
table is used to determine how many symbols in the text can be
safely skipped during scanning. TheHASH table,PREFIX table,
and the PAT_POINT list are used when verification is needed.
The SHIFT table is related to our pre-filter design and is de-
scribed as follows.
Assume that the SHIFT table has entries. A hash func-

tion, denoted by , is required for the construction of the
SHIFT table. The input of is a block of size symbols,
and its output falls in . Initially, set

for all . Then, change
to if there exists , such that

, and
for all ,

and all .
A search window of length is used during scanning.

Initially, the search window is aligned with the input text
string, i.e., the substring contained in the search window is

. During scanning, the last symbols of the text
string contained in the search window are hashed. Let be
the hash result. If , then the search window is
advanced by positions. In case ,
the verification engine is invoked and the candidate patterns
are verified sequentially. After verification, the search window
is advanced by one position.

III. PROPOSED PATTERN-MATCHING ARCHITECTURE

As mentioned before, our proposed pattern-matching archi-
tecture consists of a pre-filter and a verification engine. The
pre-filter is designed based on Bloom filters, and the verifica-
tion engine is modified from the AC algorithm.

A. Pre-Filter Design

As in theWM algorithm, only the first symbols of each pat-
tern are considered in constructing the pre-filter, where has
to be smaller than or equal to the length of the shortest pattern.
To achieve a high degree of system performance, is normally
chosen to be the length of the shortest pattern. Given a block
size , our pre-filter design includes membership query
modules denoted as and . Every
membership query module has bits. Recall that
is the -symbol prefix of pattern . The th bit of

, is set to 1 iff there exists a pattern such
that . Unlike the WM algorithm,
our pre-filter design usesmembership querymodules rather than
the SHIFT table. As will be seen later, such a design allows pre-
vious query results to be easily accumulated to improve system
performance.
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Fig. 2. Stateful pre-filter architecture for and .

As an example, assume that alphabet
and pattern set , where

, and . Since the length of the shortest pat-
tern is 5, we can choose . Assume that ,
and the hash function is the identity mapping. For such a set-
ting, there are membership query modules. Let

be the content of the th bit
of the th membership query module. We have
iff , or 61; iff , or 46;

iff , or 69; and iff
, or 92.

Again, a search window of length is used during
scanning. Initially, is aligned with the input text string
so that the substring of contained in is .
In general, assume that the substring of contained
in is . The -symbol suffix, i.e.,

, is used to query the mem-
bership query modules. Let , be the
report of and denote the
bitmap of the current query result. Note that iff
was set to 1, where .
We use a master bitmap of size bits to accu-
mulate the previous query results and act as the state of the
pre-filter. Let represent the
master bitmap. Initially, we set , i.e.,
for all . After fetching a query result,
we perform , where & is the bitwise-AND
operation. A suspicious substring starting from the first symbol
contained in is found, and the verification engine is invoked
if . The search window is advanced by

positions if for all ,
or positions if and for
all . If is determined to be advanced
by positions, MB is right-shifted by bits and filled with
1’s for the holes left by the shift. Fig. 2 shows the pre-filter
architecture for and . A virtual membership query
module , which always reports a 1, is added to ensure the
rightmost 1 detector functions correctly. The correctness of the
stateful pre-filter is proved in Section IV.
The pre-filter is stateless without the master bitmap. In this

case, only the current query result is used to determine window

advancement. It is not hard to see that, with the master bitmap,
can be advanced by more positions. We provide analytical

comparison of stateful and stateless designs in the Appendix. In
fact, as shown in Section IV, the proposed implementation using
master bitmap and simple bitwise-AND and shift operations is
optimal in the sense that it is equivalent to utilizing all previous
query results.
We use an example to explain the operation of the stateful

pre-filter. Consider the membership query modules constructed
above and assume that . Initially, contains
23764 and is 1111. The substring 64 is used for the first
query, and the query result . Since

is advanced by one position, and becomes 1001.
In the second iteration, the substring contained in is 37646,
and the query result is . Since ,
the search window is advanced by four positions, and
is updated as 1111. In the third iteration, the substring 62 is used
as the query, and the result is . Since

, a suspicious substring starting from the first symbol con-
tained in is found. Therefore, the verification engine is in-
voked, and the pattern is detected. After the veri-
fication, the search window is advanced by four positions. Since
the length of the remaining input text string, i.e., 21, is smaller
than , the scanning process ends.
Note that, for the above example, the query result in the first

iteration, i.e., , indicates that it is impossible to
find a pattern occurrence starting from the third or the fourth
symbol contained in because . In other words,
after is advanced by one position, neither the second nor the
third symbol contained in can be the starting symbol of a
suspicious substring. Therefore, although the query result has

in the second iteration, it is safe to advance
by four positions. We use the master bitmap to accumulate
previous query results and carry them from previous iterations
to the current one. Without (which becomes stateless), the
search window can only advance by one position in the second
iteration.
In general, performing multiple queries in each iteration

can reduce false positive probability and increase window
advancement. However, this requires more processing time
than is needed to perform a single query. Assume that in
each iteration queries are performed with different hash
functions and independent sets of membership query mod-
ules. Similar to the single-query case, the last symbols
within are used for multiple queries during scanning. Let

represent the bitmap reported from the th
query and . The master bitmap
is updated as . The window advancement
and the presence of a suspicious substring are determined
according to the value of in the same way as in the
single-query case. The optimal value of that maximizes
throughput performance will be analyzed in the Appendix.

B. Verification Engine Design

The verification engine is designed based on the AC
algorithm so that all candidate patterns can be verified simulta-
neously. The use of the pre-filter requires modification to the
AC algorithm. The first modification, which concerns the goto
function, is to delete the self-loop, if exists, at the start state
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because the task of consuming a symbol at the start state is
taken over by the pre-filter. The second modification is to omit
the failure function because once the goto function returns the

message, we know that the suspicious substring found
by the pre-filter is a false positive. The third modification is
regarding the output function. Assume that patterns and
satisfy , where is a nonempty string. Let be the
state represented by string . In the original AC algorithm,

includes pattern . In our proposed architecture,
pattern is removed from . The reason is that if
pattern occurs in , the pre-filter will notify the verification
engine when the starting position of pattern is aligned with
the search window. If includes pattern , then
will be detected multiple times if is a substring of .
Since the failure function is not necessary, only the goto func-

tion and the output function need to be stored. The output func-
tion is simplified because at most one pattern is matched in each
state. Similar to the scheme proposed in [12], we adopt the con-
cept of variable-length path compression to reduce the memory
requirements of the goto function. However, since there is no
restriction caused by the failure function, our proposed architec-
ture can yield better compression results than the scheme pro-
posed in [12].
We call single-child state a first single-child state if its

parent state is a branch state. State is said to be an explicit
state if it is the start state, a branch state, a first single-child
state, or a final state. We store all patterns and design data
structures for explicit states. The patterns are stored con-
tiguously in the Compacted_Patterns file. For example, if

, then the Compacted_Patterns file
is .
For a branch state, we use the banded-row format, which al-

lows fast random access without imposing a large memory re-
quirement, to store its goto transition vector. As a result, we
still have a two-dimensional state transition table. The resulting
state transition table is named the Branch State Transition (BST)
table. Note that the number of rows in the BST table is only
equal to the number of branch states, which is at most for
patterns.
Assume that state is a single-child state and is represented

by string . State is said to be a descendent state of state if it
is represented by (the concatenation of and ), where is a
nonempty string. Furthermore, state is said to be a descendent
explicit state of state if, in addition to being a descendent
state of state is an explicit state. State is said to be the
nearest descendent explicit state (NDES) of state if state is a
descendent explicit state of state and there is no other explicit
state on the path from state to state .
Suppose that state is a first single-child state and state

is its NDES. Let be the first pattern in the pat-
tern set which contains as a prefix. The data structure for
state includes .position and .distance, where .position
and .distance respectively represent the position of the
th byte of in the Compacted_Patterns file and , where
denotes the length of string . If the start state or a final state

is a single-child state, its data structure is the same as that for
state . Note that the data structure of state does not con-
tain .NDES because one can always set the state number of
.NDES as one plus that of .

Fig. 3. Goto graph for and
. (a) Goto graph of

the original AC algorithm. (b) Compressed goto graph in our proposed archi-
tecture. (c) Path-compressed goto graph of the scheme proposed in [12].

Finally, for each leaf state, we store nothing but an identifier
to indicate that all input symbols result in the message. Of
course, every explicit state needs a flag to indicate whether or
not it is a final state, and if it is, the identification of the matched
pattern is stored. Similar to leaf compression [12], our design
significantly reduces memory requirements for leaf states. Our
design needs two bits for every explicit state to indicate its type
(branch, single-child, or leaf) and another bit to indicate whether
or not a match is found in the state. Except for the matched pat-
tern (which is needed for all schemes), these three bits are the
only information required for a leaf state. As for leaf compres-
sion, one bit is added to every goto transition or to every symbol
of the corresponding compressed path if path compression is
adopted. For a large pattern set, we expect the number of ex-
plicit states to be much smaller than the number of symbols of
all patterns.
As an example, assume that alphabet

and pattern set
. The corresponding goto graph of the

original AC algorithm is shown in Fig. 3(a). Fig. 3(b) shows our
compressed goto graph. Note that the states on the compressed
goto graph are numbered so that the state number of .NDES
for explicit single-child state is . Compared to Fig. 3(a),
the number of states is reduced from 26 to 12. The single-child
states 1, 3, 5, 7, and 10 are first single-child states and thus
remain on the goto graph. Note that it is possible to eliminate
those first single-child states if the label on each outgoing goto
transition of a branch state is allowed to be a string. However,
by doing so, the state transitions of a branch state become com-
plicated, and system performance is degraded. Therefore, we
do not adopt this strategy. Fig. 3(c) shows the path-compressed
goto graph of the scheme proposed in [12]. Because of the
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Fig. 4. Verification engine data structures for
and . (a) BST
table. (b) Data structure for first single-child states and single-child final states.
(c) Output function. (d) Compacted_Patterns.

Fig. 5. Input text string and suspicious starting positions.

incoming failure transitions, the single-child states 1, 2, 3, 15,
16, 17, and 22 in Fig. 3(c) cannot be removed.
In Fig. 3(b), states 0 and 2 are branch states, while states

4, 6, 9, and 11 are leaf states. The remaining states are either
first single-child states or single-child final states. Fig. 4 shows
the data structures of our verification engine for this example.
Assume the symbols in are sequentially encoded from 0
to 9. The vector representing goto transitions for state 0 is
( 1 10 7 ) and is stored as
(4 2 1 10 7). Similarly, the goto transition vector for state 2
is ( 3 5 ) and is stored
as (4 3 3 5). Let be state 7, a first single-child
state. Since state 8, represented by , is the NDES of with
distance 2 and is the first pattern that contains as a
prefix, we store .position 24 and .distance . If is
state 8, we store .position and .distance .
To explain the operation of the proposed veri-

fication engine, let us consider the above ex-
ample with and

. The
data structures are shown in Fig. 4. The input text string and
the suspicious starting positions identified by the pre-filter are
illustrated in Fig. 5. When the verification engine is invoked,
the verification procedure starts to traverse the compressed
goto graph from state 0. The verification procedures stops once
the goto transition fails or the symbols of are exhausted.

Consider the suspicious starting position 1. Since state 0 is
a branch state, the verification engine consults the BST table
and knows that the first symbol in the suspicious substring,
i.e., , is outside the band of state 0, which implies

. Therefore, the suspicious substring is a false positive and
the verification procedure stops. Next, consider the suspicious
starting position 2. Again, the verification procedure starts by
consulting the BST table. This time, the engine finds that the first
symbol in the suspicious substring, i.e., , is inside the band of
state 0. However, the band values indicate that .
Thus, this suspicious substring is also a false positive, and the
verification procedure does not need to continue. Now, let us
consider the suspicious starting position 3. The BST table indi-
cates that the first symbol in the suspicious substring, i.e., , is
inside the band of state 0 and . Consequently, the en-
gine moves the current state from state 0 to state 7. Since state 7
is a first single-child state and its .position and .distance are
respectively 24 and 2, the engine checks if the following sub-
string in of length two is the same as the two-symbol sub-
string starting from the 24th position of Compacted_Patterns.
The checked result is true, therefore the engine updates the cur-
rent state by increasing the state number by one to state 8. Since

, Pattern 3, i.e., , is detected. The verifi-
cation procedure does not stop here. State 8 is a single-child
final state, and its .position and .distance are respectively
29 and 4. Thus, the engine compares the substring in ,
and the substring in Compacted_Patterns. The substrings
are different, which implies the goto transition fails, therefore
the verification procedure stops. Finally, consider the suspicious
starting position 4. As in the previous case, the current state is
moved from state 0 to state 10, and then from state 10 to state 11.
State 11 is a leaf state, which implies: 1) some pattern is detected
here; and 2) the goto transition will fail, and therefore the veri-
fication procedure stops. Since we have , we
know that Pattern 5, i.e., , is detected.

C. Time Complexity

The number of memory accesses required by each type of
state is analyzed as follows. Assume that bytes are fetched
in a memory access. For a branch state, to process one byte, we
need memory access to obtain bandwidth (2 B), the index
of the first vector element stored (1 B), state type (2 bits), and the
final state indication (1 bit). In addition, memory access
is required to get a band value (3 B) if the input symbol is within
the band. If the state is a final state, another memory ac-
cess is performed for the identification of the matched pattern
(2 B). Therefore, a branch state requires at least and at
most memory accesses. For an ex-
plicit single-child state .distance bytes are processed with
at most memory accesses.
More specifically, we need to obtain .position (3 B),
.distance (1 B), state type (2 bits), and the final state indication
(1 bit), up to to reach .NEDS, and for
the matched pattern if state is a final state. For a leaf state, we
need memory access to obtain the state type and the iden-
tification of the matched pattern. Since the operations are quite
simple, the proposed architecture is also suitable for hardware
implementation.
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IV. CORRECTNESS AND OPTIMALITY PROOFS OF THE STATEFUL
PRE-FILTER

In this section, we prove the correctness and optimality of the
proposed stateful pre-filter.

A. Proof of Correctness

Consider the th iteration. Let
and respectively be the
contents of the search window and the master bitmap
in the beginning of the considered iteration. Further let

be the query result and
be the

updated master bitmap. We prove that the proposed
stateful pre-filter does not miss any pattern occurrence
by showing the following claim. Note that given an

and any , if

for all patterns , then there is no pattern occurrence starting
from . Therefore, it is safe to advance the search
window by positions if for all

(without verification) or for
all and (after verification).
Claim: If then it

holds that there exists some , such that

for all patterns .
According to the operation of the proposed stateful pre-filter,

is always true, thus implies
. Therefore, the claim is true for

because meets the requirement. We prove the case
by mathematical induction.

For , i.e., the first iteration, it is true that
iff . In other words, we have iff

for all
patterns . Therefore, for the first iteration, the claim is true by
choosing . Assume that it is true for and consider
the th iteration.
The notation needs to be clarified since two iterations are con-

sidered simultaneously. Let
, and

respectively
be the search window content, the master bitmap, the query
results, and the updated master bitmap of the th iteration.
Similarly, let , and be
those of the th iteration. Assume that the search
window is advanced by positions in the th iteration. If

, we have , and the claim is true
for the th iteration by choosing . Consider the case

. After advancing the search window and updating
the master bitmap, we have and

.
Let and

assume that for some .
If , then it must hold that , and there-
fore the claim is true by choosing . Assume that

. Since , we have
or . The claim is true for the th

iteration by choosing if . Assume that

, which implies . Since ,
we know by hypothesis that there exists an

, such that
for all patterns . Let

and .We conclude that there exists an
, such that

for all patterns . Therefore, the
claim is also true for the th iteration for .
This completes the correctness proof of the proposed pre-filter.

B. Proof of Optimality

We now prove that the implementation with the master
bitmap is optimal in the sense that it is equivalent to using all
previous query results. For convenience, we call the scheme
implemented with master bitmap Scheme A and the one
using all previous query results Scheme B. We assume that
Scheme B, as Scheme A, advances the search window for as
many positions as possible in each iteration. The two schemes
are equivalent if, in each iteration: 1) they advance the search
window by the same number of positions; and 2) if one in-
vokes the verification engine, the other as well. We prove the
equivalence of Schemes A and B by mathematical induction
on iteration number.
Consider the th iteration. Let

,
and respectively
be the search window content, the master bitmap, the query
result, and the updated master bitmap of Scheme A. The symbol

, is said to be a possible starting symbol of
pattern occurrence for Scheme B in the beginning of the th it-
eration iff it cannot be excluded based on the results of the first

queries. We shall show that for Scheme A iff
is a possible starting symbol of pattern occurrence

of Scheme B in the beginning of the th iteration (Condition 1)
and the condition for both schemes to invoke the verification
engine is (Condition 2). Note that
(for Scheme A) iff (for Scheme A) and ,
and iff is considered a possible starting
symbol of pattern occurrence based solely on the th query
result (for Scheme B). Therefore, Condition 1 implies both
schemes advance the search window by the same number of
positions (after verification, if needed) in the th iteration.
For , we have and .

Since no query was performed prior to the first iteration,
every symbol contained in the search window is a pos-
sible starting symbol of pattern occurrence of Scheme B
in the beginning of the first iteration. Therefore, Condi-
tion 1 is true. Moreover, Scheme A invokes the verifica-
tion engine iff . Since ,
the condition is identical to , which implies

for some
pattern , which in turn implies Scheme B has to invoke the
verification engine to check for potential pattern occurrence
starting from . Therefore, Condition 2 is also true and the two
schemes are equivalent for the first iteration.
Assume that the two schemes are equivalent for the
th iteration and consider the th iteration. Let

, and
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be the parameters of the
th iteration and

, and
be

those of the th iteration for Scheme A. Assume
that the search window is advanced by positions
in the th iteration. If , we have

. The last
symbols contained in , i.e., and

, can never be excluded as possible starting symbols
of pattern occurrences based on the first queries, and the
symbols are newly contained
by the search window and cannot be excluded based on the first
queries either. Thus, we conclude that all symbols contained

in are possible starting symbols of pattern occurrences
for Scheme B in the beginning of the th iteration.
Note that we also have for Scheme A.
Therefore, the th iteration is just like the first iteration.
Consequently, the two schemes are equivalent for the th
iteration. Assume that . In this case, we
have
and . Again, the last
symbols contained in , i.e., and

, can never be excluded as possible starting symbols
of pattern occurrences for Scheme B based on the first
queries, and the symbols

are newly contained by the search window and cannot be
excluded based on the first queries either. Therefore, the
symbols and cannot
be excluded in the beginning of the th iteration.
In other words, , is a possible
starting symbol for pattern occurrence of Scheme B in
the beginning of the th iteration. This corresponds
to for all . Consider the bit

. According to the proof of
the claim in Section IV-A, if , then the
symbol can be excluded
as a possible starting symbol of pattern occurrence for
Scheme B. Assume that . Since ,
we have . By hypothesis,
implies is a possible starting symbol of
pattern occurrence of Scheme B in the beginning of the th
iteration. This fact, together with , implies that

remains a possible starting
symbol for pattern occurrence of Scheme B in the beginning
of the th iteration. Therefore, Condition 1 is true for
the th iteration.
Finally, assume that , which is the condition

for Scheme A to invoke the verification engine. In this case, it
holds that , which implies that Scheme B cannot
exclude as a potential starting symbol of pattern occur-
rence. Hence, it will invoke the verification engine to check pat-
tern occurrence starting from . Consequently, Condition 2
is also true for the th iteration. This completes the proof
of equivalence for Schemes A and B.

V. EXPERIMENTAL RESULTS

In this section, we compare the performances of the investi-
gated pattern-matching schemes. All schemes are implemented

Fig. 6. Throughput performance of the Pre-filter AC scheme for different
values of block size .

in C++. For convenience, we name our proposed scheme
Pre-filter AC. To study the impact of short patterns to
Pre-filter AC, we conduct simulations for small values of .

A. Simulation Settings

The experiments are conducted on a PC with an Intel Pen-
tium 4 CPU operating at 2.80 GHz with 512 MB of RAM, 8 kB
L1 data cache, and 512 kB L2 cache. The entire ClamAV pat-
tern set is used, containing 29 179 string signatures. The min-
imum,maximum, average, and total lengths of the signatures are
10, 210, 66.43, and 1 938 433 B, respectively. The total number
of states generated by the AC algorithm is 1 844 895. Since
the shortest pattern is 10 B, we set the search window length

. We concatenated executable files and script files to
form the input text since malware can appear in the form of an
executable or script.

B. Numerical Results

For the entire ClamAV pattern set, the time required to con-
struct the data structure of the proposed Pre-filter AC scheme
is 1812 ms. The construction is needed only in the beginning or
when the pattern set is changed. Fig. 6 shows the throughput per-
formance of Pre-filter AC for different values of block size .
Note that for , the false positive probability of pre-filter
is large, implying the verification engine is frequently invoked,
reducing system throughput. The average window advancement
tends to decrease for large values of . According to our exper-
imental results , and 5 are good choices to achieve
high system throughput, with being optimal. Thus,
is used in the following experiments.
The size (in bits) of a membership query module in the

proposed Pre-filter AC scheme (which is also the number of
entries in the SHIFT table of the WM algorithm) is 2 . The
resulting false positive probability is approximately 0.359.
To ensure a fair comparison, we set the pre-filter size of the
Hash-AV ClamAV scheme at 2 bits since it uses only one
membership query module. Recall that to advance the search
window by four positions each time to improve system per-
formance, the Hash-AV ClamAV scheme inserts all -byte
substrings starting at the first four offsets of all signatures
into its membership query module. As a result, signatures
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Fig. 7. Throughput comparison.

TABLE I
MEMORY REQUIREMENT COMPARISON

shorter than bytes appearing in the input text may not
be detected. For (the value suggested by the authors
of [30]), the scheme requires a “two-scan” approach. That is,
Hash-AV ClamAV is first performed for signatures longer
than or equal to 12 B, and ClamAV is then executed for the
rest of the signatures. We omit the second scan by removing
signatures shorter than bytes for the Hash-AV ClamAV
scheme in performance comparison.
We compare the basic version of the proposed Pre-filter AC,

i.e., one query per iteration, with various pattern-matching
schemes from the literature. A simple hash function is adopted
for our proposed pre-filter. Let be the data block
to be hashed. The hash function generates as the hash
result. Fig. 7 and Table I show the comparisons of throughput
and memory requirements.
Our proposed Pre-filter AC scheme requires less than

4.6 MB, including 0.06 MB for pre-filter, 1.94 MB for patterns,
and 2.58 MB for the data structures of the modified AC au-
tomaton. In addition to low memory requirements, the proposed
Pre-filter AC scheme yields higher throughput than all the
other schemes. The comparisons are discussed in the following.

C. Comparison to AC-Based Implementations

The AC-based implementations include the original AC algo-
rithm, bimapped AC, AC-bnfa, and banded-row format AC. As
expected, the data structure of the original AC algorithm uses an
extremely huge amount of memory space for the entire ClamAV
pattern set. This results in low throughput because of cache
misses. Among the other schemes, the bitmapped AC requires

the most memory space because every state needs a bitmap of
256 bits or 32 B. It was reported that the path compression tech-
nique can achieve a 2.54:1 compression ratio [10], but even with
path compression, its memory requirements are still larger than
those of the other schemes. The bitmapped AC also yields lower
throughput performance than the other schemes because it needs
to compute the population count in a 32-bit bitmap.
The banded-row format AC and the AC-bnfa have relatively

high throughput. Banded-row format AC actually outper-
forms AC-bnfa because it allows fast random access, whereas
AC-bnfa requires linear or binary search to perform state
transition. The properties of fast random access and efficient
memory reduction are the major reasons for us to adopt the
banded-row format in our design.
Note that our proposed Pre-filter AC scheme requires much

less memory space than the banded-row format AC because
the size of the two-dimensional state transition table in Pre-
filter AC is proportional to the number of patterns rather than
the total length of patterns as in banded-row format AC.

D. Comparison to ClamAV-Based Implementations

The ClamAV implementation stores a partial AC trie of depth
two. As a result, it requires the least amount of memory space
among the investigated schemes. However, it has to sequentially
check all patterns associated with a leaf state whenever it is
visited, which could be time-consuming. In addition, no sym-
bols in the input text are consumed during the checking pro-
cedure if the checking fails. Thus, the throughput performance
of ClamAV is unsatisfactory. With the use of a pre-filter, the
Hash-AV ClamAV scheme improves throughput performance
of the original ClamAV implementation.

E. Comparison to WM Algorithm

Experiments on the WM algorithm found the optimal block
size is , which was used for the WM algorithm in perfor-
mance comparison. As shown in Fig. 7 and Table I, the proposed
Pre-filter AC scheme and the WM algorithm provide the best
throughput performance, and the memory requirements of both
are acceptable.
To evaluate performance under various fractions of malicious

traffic, we replaced some content of a 2.2-MB Windows exe-
cutable with 10, 100, or 1000 signatures. If the average size
of a malicious program is 1 kB, then the respective fraction
of malicious traffic for 10, 100, or 1000 signatures is about
0.45%, 4.5%, or 45%. Fig. 8 shows the experimental results.
The throughput of the Pre-filter AC scheme is seen to decrease
as the number of signatures in the input text increases. However,
it still outperforms the WM algorithm.
Table II compares the memory requirements for different

values of . Recall that is the size (in bits) of a membership
query module in the Pre-filter AC scheme and is also the
number of entries in the SHIFT table of the WM algorithm.
As one can see, when is small, the WM algorithm requires
less memory space than the Pre-filter AC scheme. However,
the memory requirement of the WM algorithm grows rapidly
as increases. By contrast, the growth for the Pre-filter AC
scheme is relatively slow. When , the memory re-
quirement of the Pre-filter AC scheme is 59.5% of that of the
WM algorithm. The percentage decreases as increases. This
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Fig. 8. Throughput for scanning files with different numbers of signatures.

TABLE II
MEMORY REQUIREMENT COMPARISON FOR DIFFERENT VALUES OF . IN THIS
TABLE, IS THE SIZE (IN BITS) OF A MEMBERSHIP QUERY MODULE IN THE
PRE-FILTER AC SCHEME AND IS ALSO THE NUMBER OF ENTRIES IN THE

SHIFT TABLE OF THE WM ALGORITHM

is because the memory requirement of the verification engine in
the Pre-filter AC scheme is not influenced by the value of ,
while that in the WM algorithm is. The size of the HASH table
used in the verification engine of the WM algorithm increases
as increases. Both schemes need to store the pattern set.
The Pre-filter AC scheme uses the Compacted_Patterns file,
which requires 1.94 MB. The WM algorithm needs slightly
larger memory space because an ending symbol is required for
each pattern. The pre-filters of both schemes take 0.06, 0.26,
1.04, and 4.19 MB of memory for and
, respectively. The verification engine of the Pre-filter AC

scheme requires 2.58 MB, independent of . For the WM al-
gorithm, the verification engines respectively takes 0.22, 0.61,
2.19, and 8.48 MB of memory for , and .
Fig. 9 shows the throughput comparison of the Pre-filter AC

scheme and the WM algorithm for different values of . The
input text is a 2.2-MBWindows executable. The Pre-filter AC
scheme has higher throughput than the WM algorithm because:
1) the stateful concept allows the search window to be advanced
more in comparison with the stateless design; and 2) the verifi-
cation engine in the Pre-filter AC scheme checks all candidate
patterns simultaneously, while that in the WM algorithm needs
to check them one by one.

F. Impact of Short Patterns

To study the impact of short patterns on Pre-filter AC, we
conduct simulations for small values of . The value of is
chosen to be the optimal one for each . The input text is
still a 2.2-MB Windows executable. As shown in Fig. 10, the
throughput performance reduces as the value of decreases. In
other words, pre-filtering does not help (and possibly even hurts)

Fig. 9. Throughput comparison for different values of .

Fig. 10. Impact of on the throughput performance of the Pre-filter AC
scheme.

system performance if there are short patterns. This is a common
drawback of schemes using pre-filters. One possible remedy is
to utilize the verification result to help advance the pre-filter.
How to efficiently combine the operations of the pre-filter and
verification engines remains to be studied.

VI. CONCLUSION

In this paper, we propose a pattern-matching architecture that
achieves high throughput with low memory requirements. In
the architecture, we introduce the stateful pre-filter concept and
present an AC-based verification engine that can check all can-
didate patterns simultaneously. A master bitmap with simple
bitwise-AND and shift operations is used to efficiently accu-
mulate previous query results. Such a simple implementation is
optimal because it is equivalent to utilizing all previous query
results.
The performances of different pre-filter designs are evalu-

ated both mathematically and numerically. The effect of mul-
tiple queries in each iteration is also studied. Results show that
the proposed pre-filter with the master bitmap (stateful) outper-
forms both the proposed pre-filter without themaster bitmap and
the pre-filter of the widely used Wu-Manber algorithm (state-
less). Moreover, our proposed schemes are compared to var-
ious related works. The stateful architecture performs the best in
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terms of both memory requirement and throughput among the
schemes that yield satisfactory performance for both metrics.
Therefore, for applications that require high throughput perfor-
mance with memory space constraints, e.g., an embedded se-
curity appliance in a high-speed network environment, our pro-
posed stateful architecture is the preferred solution.
Clearly, a larger search window provides better throughput

performance. However, the length of the search window is
upper-bounded by the length of the shortest pattern. Conse-
quently, to improve performance and reduce false positives,
a virus expert should try to avoid short patterns in deriving
signatures. Two interesting future research topics would be the
implementation and performance comparison of various pat-
tern-matching algorithms on multithread, multicore processors
and the analysis of pre-filter performance for general cases.

APPENDIX

In this Appendix, we analytically compare the performances
of stateful and stateless pre-filter designs. The stateless de-
signs include the pre-filter presented in the WM algorithm
and our proposed pre-filter without the master bitmap. The
average window advancement per unit time, which deter-
mines achievable throughput, is selected as the performance
metric. For simplicity of analysis, we assume that symbols in
patterns and input text string are independent and uniformly
distributed over the alphabet. Good hash functions, together
with (random) window advancement, can make this assump-
tion acceptable to certain degree. Recall that the query result

. Let
represent the probability of for any .
We have . Let denote the random
variable of window advancement for queries. The average
window advancement, denoted by , can be evaluated by

(1)

where is different for different algorithms.

A. Pre-Filter Performance

We use to represent the average time consumed in one
query. As a consequence, the average time spent in queries is

, and determines the pre-filter throughput. It is
reasonable to assume that is the same for algorithms that use
the same set of hash functions. Assuming that all investigated
algorithms use the same set of hash functions, we can conclude
that pre-filter throughput is proportional to . The optimal
value of that maximizes throughput satisfies

(2)

In the following, we separately derive for the pre-filter
in the WM algorithm, the stateless version of the proposed pre-
filter, and the stateful pre-filter.
1) Wu–Manber Pre-Filter: Conceptually, the window ad-

vancement decided by the SHIFT table in the WM algorithm
is equivalent to that decided by the stateless version of our pro-
posed pre-filter, except that the window is advanced by only one
position if . Therefore, we have (3), shown at the
bottom of the page, and can be obtained from (1) and (3).
2) Stateless Version of the Proposed Pre-Filter: For the state-

less version of our proposed pre-filter, the bit is not in-
volved in determining window advancement. Consequently, we
have (4), shown at the bottom of the page. Similarly, can
be obtained from (1) and (4). Note that the average window ad-
vancement of the stateless version of our pre-filter is greater than
that of the WM algorithm. This is because when ,
the window advancement in the WM algorithm is always one,
and it can be greater than one for our proposed pre-filter.
3) Stateful Pre-Filter: For the proposed stateful pre-filter, we

use a Markov chain to analyze the average window advance-
ment. Again, the bit is not involved in determining
window advancement. The states of the Markov chain corre-
spond to the values of , the leftmost
bits of after bitwise-ANDing with (but before the
right shift). As a result, there are states on the Markov
chain. Since the symbols in the patterns and input text string

if

if

if

(3)

if

if

(4)
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are independent and uniformly distributed over the alphabet, the
Markov chain is homogeneous.
Let be the state after the th iteration of queries.

Furthermore, let
, denote state transition probabilities and

represent the stationary proba-
bility distribution. Given , one can compute and can
then be obtained by

(5)

where is the window advancement in state .
The derivation of is explained as follows. Let

(binary representation),
, and assume that, in state , the search

window is to be advanced by positions. Furthermore, let
be the leftmost bits of

the right-shifted master bitmap in state . If , then
1 and . In this case, we have

, where is the number of 1’s in
. Assume that . We

have and .
The state transition probability if there exists ,
0 , such that and . Otherwise,
we have , where is the number
of 1’s in and is the number of 0’s in

.

B. Overall System Performance

Let be the average time spent on queries and ver-
ification, if needed. determines achievable system
throughput, and the optimal value of , which maximizes
throughput, is given by

(6)

Let represent the average time consumed in verification.
In the WM algorithm, verification is required when the window
advancement decided by the SHIFT table is 0. In the stateless
version of Pre-filter AC scheme, verification is required when

. Note that the two conditions are equivalent. For
the proposed stateful Pre-filter AC scheme, verification is re-
quired if after bitwise-ANDing with . Since

is always 1 before bitwise-ANDing with , the
probability of after bitwise-ANDing with
is equal to ). Therefore, we have

(7)

for the WM algorithm and the stateless and stateful versions of
the proposed Pre-filter AC scheme. Note that the value of
depends on number of patterns and the verification algorithm.
We numerically study the optimal value of next.

C. Numerical Results

The throughput performance depends on the values of
, and . To find the optimal value of that maxi-

mizes throughput, the other parameters are fixed as follows:

Fig. 11. Pre-filter performance comparison for various pattern numbers.

Fig. 12. Processing time comparison for scanning random texts of various
sizes.

, and . For this scenario,
satisfies (2) that maximizes throughput for the WM

pre-filter and the stateless and stateful versions of the proposed
pre-filter. Therefore, we choose as a basis for comparing
pre-filter throughput, which, as mentioned before, is propor-
tional to . Fig. 11 shows the results for various pattern
numbers.
As noted in Appendix-A.2, the stateless version of the pro-

posed pre-filter is seen to outperform the pre-filter of the WM
algorithm, and the proposed stateful pre-filter provides the best
performance because all previous query results, in addition to
the current one, are used to determine window advancement in
the stateful design.
The experiment shows that, given the abovementioned values

for , and ms and
ms for our proposed Pre-filter AC scheme. From (6),
optimally maximizes system performance of the pro-

posed stateful Pre-filter AC scheme. To demonstrate the effect
of multiple queries in each iteration, we conduct experiments
to compare the processing times for the scheme with
and . Fig. 12 shows the results for various file sizes. The
implementation with requires about 1.7 times the pro-
cessing time of that with . The processing time of the
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WM algorithm is also provided in the figure for comparison, re-
quiring about 1.3 and 2.2 times the processing time of our pro-
posed stateful Pre-filter AC scheme with and ,
respectively.
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